Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range.

نویسندگان

  • H Torun
  • D Torello
  • F L Degertekin
چکیده

The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum "seesaw" like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuati...

متن کامل

Atomic force microscope based biomolecular force-clamp measurements using a micromachined electrostatic actuator.

The authors describe a method for biomolecular force clamp measurements using atomic force microscope (AFM) cantilevers and micromachined membrane-based electrostatic actuators. The actuators comprise of Parylene membranes with embedded side actuation electrodes and are fabricated on a silicon substrate. The devices have a displacement range of 1.8 μm with 200 V actuation voltage, and displacem...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Electrostatically actuated dip pen nanolithography probe arrays

Dip pen nanolithography (DPN) is a method of creating nanoscale chemical patterns on surfaces using an atomic force microscope (AFM) probe. Until now, efforts to increase the process throughput have focused on passive multi-probe arrays and active arrays based on thermal bimetallic actuation. This paper describes the first use of electrostatic actuation to create an active DPN probe array. Elec...

متن کامل

GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers

V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 82 8  شماره 

صفحات  -

تاریخ انتشار 2011